
7D[RQRP\��

A Taxonomy of Object-Oriented Measures
Modeling the Object-Oriented Space

Ralph D. Neal
NASA/WVU Software Research Laboratory, West Virginia University,
100 University Drive, Fairmont, WV 26554, U.S.A.
Email: rneal@research.ivv.nasa.gov

H. Roland Weistroffer
School of Business, Virginia Commonwealth University, PO Box
844000, Richmond, VA 23284-4000
Email: hrweistr@vcu.edu

Richard J. Coppins
School of Business, Virginia Commonwealth University, PO Box
844000, Richmond, VA 23284-4000
Email: rcoppins@busnet.bus.vcu.edu

Abstract—In order to control the quality of software and the software development
process, it is important to understand the measurement of software. A first step
toward a better comprehension of software measurement is the categorization of
software measures by some meaningful taxonomy. The most worthwhile taxonomy
would capture the fundamental nature of the object-oriented (O-O) space. The
principal characteristics of object-oriented software offer a starting point for such a
categorization of measures. This paper introduces a taxonomy of measures based
upon fourteen characteristics of object-oriented software gathered from the
literature. This taxonomy allows us to easily see gaps or redundancies in the existing
O-O measures. The taxonomy also clearly differentiates among taxa so that there is
no ambiguity as to the taxon to which a measure belongs. The taxonomy has been
populated with measures taken from the literature.1

INTRODUCTION

Software development historically has been the arena of the artist. Artistically
crafted code often resulted in arcane algorithms or spaghetti code that was
unintelligible to those who had to perform maintenance. Initially only very primitive
measurements such as lines of code (LOC) and development time per stage of the
development life cycle were collected. Projects often exceeded estimated time and
budget. In the pursuit of greater productivity, software development evolved into
software engineering. Part of the software engineering concept is the idea that the

1 Funded in part by NASA Cooperative Agreement NCCW-0040

7D[RQRP\��

product should be controllable. Control of a process or product requires that the
process or product is measurable; therefore, control of software requires software
measures [3].

Measurement is the process whereby numbers or symbols are assigned to
dimensions of entities in such a manner as to describe the dimension in a
meaningful way [7]. An entity may be a thing or an event, i.e., a person, a play, a
developed program or the development process. A dimension is a trait of the entity,
such as the height of a person, the cost of a play, or the length of the development
process. Obviously, the entity and the dimension to be measured must be specified
in advance. We cannot take measurements and then apply them to just any
dimensions. Unfortunately this is exactly what the software development
community has been doing [8], e.g., lines-of-code, being a valid measure of size, has
been used to "measure" the complexity of programs [19]. In order to truly
understand software and the software development process, software measurement
must be better understood. What are the dimensions that define software and how
do we measure them? A beginning step toward understanding software
measurement is the categorization of the measurements by some meaningful
taxonomy.

Software and software development are extremely complex. We should not expect
to be able to measure entities of such complexity with one, two, or even a dozen
measures. Measures have to be developed to allow us to view software from many
perspectives. In this paper, we differentiate between measures and metrics: A metric
is defined to be any proposed type of measurement, not necessarily validated,
whereas a measure must be validated. Thus all measures are metrics, but not all
metrics are measures. Many object-oriented (O-O) metrics have been proposed in
the literature, e.g., [2], [4], [5], [10], [11], and [12]. To better comprehend the
contributions of these metrics, it is necessary to categorize them in a meaningful
way so that the various dimensions of O-O software being measured can be better
understood. The authors are not aware of any proposed organization of software
measures or metrics in the published literature that models the object-oriented space
in a comprehensive manner. Until we better understand the many dimensions of O-
O software, we cannot truly understand the product. It does little good to measure
the process if the product is not measured. Being the best at producing an inferior
product does not define a quality process. To facilitate understanding of the product,
this paper proposes a taxonomy that helps us model the object-oriented space and
allows us to classify measures accordingly.

7D[RQRP\��

BACKGROUND

There has been little agreement among authors as to the characteristics that identify
the object-oriented approach. Henderson-Sellers [9] lists information hiding,
encapsulation, objects, classification, classes, abstraction, inheritance,
polymorphism, dynamic binding, persistence, and composition as having been
chosen by at least one author as a defining aspect of object-orientation. Rumbaugh,
et al. [15] add identity, Smith [16] adds single type and Sully [17] adds the unit
building block to this list of defining aspects. These characteristics of object-
orientation are not completely disjoint: there is much overlapping of aspects as
different authors group sub-aspects differently and create their own individual
groupings, each with a unique aspect name. It should be clear from the preceding list
that there are many dimensions to O-O software. It should also be noted that this list
may not be exhaustive.

Archer and Stinson [2] propose a taxonomy that places a metric in one (or more) of
five taxa, viz., system, coupling and uses, inheritance, class, and method. It is
unclear where a measure of say coupling among methods, as in Tegarden, et al.,
[18], would be classified in this taxonomy. The coarseness of this taxonomy also
causes metrics for different software artifacts to be grouped together, e.g., if all
coupling metrics are classified as "coupling and uses" metrics, then system measures
could be lumped together with measures of objects, measures of methods, and
measures of variables (see system messages, object fan-in, method fan-in, and
variable fan-in in Tegarden, et al., [18]). A useful taxonomy of software measures
should clearly differentiate among taxa so that a measure belongs to one and only
one taxon and there is no ambiguity as to the taxon to which a measure belongs.

The Tegarden, et al., [18] model of object-oriented systems complexity
measurement defines object-oriented systems as looking different from different
viewpoints. The model defines four levels of software strata that a software
developer might want to measure (in order of granularity): variables, methods,
objects, and systems. The model then defines characteristics (dimensions) that
contribute to the character of each level. The model clearly differentiates among the
four levels but is not so clear in defining the dimensions. For example, class design
encompasses encapsulation, complexity, and polymorphism.

Abreu and Carapuca [1] also see the advantages of separating measures by level.
However, the Abreu and Carapuca model also groups measures into large
ambiguous lots. This model defines software entities (granularity) as method, class,
and system, and it defines the dimensions within each level of granularity as design,
size, complexity, reuse, productivity, and quality. This three by six model is less
encompassing than the model of Tegarden, et al. Another problem with the Abreu
and Carapuca model is the grouping of process measures, with product measures,
e.g., productivity with size. While both process and product measures are useful,
mixing them in the same taxonomy only clouds the two separate issues.

7D[RQRP\��

Beyond these models, little work on software measures taxonomies has been
reported in the published literature. Building on the models by Tegarden, et al., [18]
and Abreu and Carapuca [1], a new object-oriented measures taxonomy (see Table
1) is proposed. This taxonomy partitions the object-oriented space into non-
overlapping domains so that measures of these domains can be fit unambiguously
into one and only one taxon.

THE OBJECT-ORIENTED SPACE AND THE NEW
TAXONOMY

In order to measure object-oriented software the measurer needs to be aware of the
characteristics of O-O software and of the different levels of granularity inherent in
the O-O paradigm. The Tegarden, et al., [18] model of object-oriented systems
complexity measurement defines four levels of software strata. Neal [12] adds a
fifth stratum to this. Building on this model, the object-oriented space can be
represented as a matrix that partitions the space into several levels of granularity
with multiple characteristics for each of these levels. The software levels that a
software developer might want to measure (in order of granularity) are variables,
methods, classes, programs, and systems. The levels are represented by the columns
of the matrix. Each level of granularity exhibits characteristics (dimensions) that
contribute to the character of that level. The dimensions are represented by the rows
of the matrix. Fourteen dimensions of O-O software have been gleaned from the
literature. This model partitions the object-oriented space into understandable,
unambiguous segments, and thereby forces a reasonable structure upon measurers.

As has been stated earlier, a first step toward understanding software measurement
better is the categorization of the measurements by some meaningful taxonomy. If
we are to learn about the object-oriented space, it must be possible for diversified
measurers to reach similar conclusions given the same data. A taxonomy should at
the least allow each measurer to start from a common basis.

Postulate: A useful software measures taxonomy should clearly
differentiate among taxa so that there is no ambiguity as to the taxon
to which a measure belongs.

Table 1 supplies a summary of measures or metrics for each of the fourteen
dimensions across the five levels of granularity (70 cells). Though many of these
fourteen dimensions appear repeatedly in the literature, they may not necessarily be
the dimensions that matter the most. It is possible that there are other dimensions
that do not yet have metrics proposed to measure them, but the measurement of
which would be useful or necessary to understand an object-oriented artifact.
Certainly not all fourteen dimensions apply to all levels, e.g., encapsulation does not
apply to variable or method. The same dimension measured on different levels will

7D[RQRP\��

almost certainly require different measures or at least a different scope, e.g., lines-
of-code (LOC) in a program vs. LOC in a system.

The object-oriented space matrix offers a starting point for such a categorization of
measures. By filling in the cells of the object-oriented space matrix with the
measures or metrics proposed in the literature, the matrix becomes the Object-
Oriented Measures Taxonomy. This taxonomy includes all of the published,
interesting characteristics of software and clearly defines where any measure fits
among the taxa without worry of overlap or ambiguity. If a measure cannot be
placed easily into one and only one taxon, the measure may not be well understood.
A measure that is not well understood is unlikely to be useful to the measurer and
should be discarded. It is also possible that if a measure cannot be placed easily into
any existing taxon that the taxonomy is incomplete. In that case, more research may
be needed to expand the taxonomy.

Table 1 has been populated with thirty measures taken from the literature
[4,5,10,11,14]. These measures have been validated in the narrow sense of Fenton
[7] using measurement theory with Zuse’s augmentation [12, 13, 19, 20]. Every
measure that could be validated in the narrow sense could also be categorized in
this taxonomy. In addition to these validated measures, several unvalidated
metrics from Tegarden, et al., [18] have been included in Table 1. They have been
included to show that work is being done at the variable and method levels. These
metrics in no way represent all of the metrics offered by Tegarden, et al.
Additional metrics were not included for those cells for which validated measures
already exist.

CONCLUSION AND FUTURE RESEARCH

As Table 1 shows, often there are multiple metrics available which attempt to
measure the same dimension of the same level. The collection of measurement data
is usually very expensive [6]; nevertheless, the application of multiple measures to
measure the same dimension of the same level of software can be useful. The
collection of data for multiple measures allows the measures to be compared to each
other to either confirm that they do indeed measure the same dimension or establish
that one (or more) of them is measuring something other than the dimension in
question. Once it is established which measure most cost effectively measures the
dimension in question, it may no longer be necessary to collect data for the other
measures. If the measures in one cell are not all measuring the same dimension, then
one or more of the measures may have been miscataloged.

As stated earlier, the fourteen dimensions used in the proposed taxonomy are those
found in the literature. In other words, these are the dimensions that have been
thought by the O-O community to be important enough to measure. Other
dimensions that may be of equal or higher importance may yet be discovered.
Because not all of the fourteen dimensions are applicable to all five levels some

7D[RQRP\��

cells in Table 1 should remain empty.

Some measures may be scaleable to levels other than that level for which they were
designed. Measures that are scaleable are not directly applicable as defined but may
lend themselves to being averaged or summed to fill a cell at a higher level. No
measures have been found to be scaleable to cells at a lower level.

Much work remains before the nature of the object-oriented software development
process can be sufficiently understood through the measurement of software
products. More measures need to be developed to allow us to view software from its
many perspectives, i.e., validated measures need to be found to fill more of the
empty cells of the object-oriented measures taxonomy (Table 1). Further, the
measures populating the proposed taxonomy need to be tested empirically.
Software product measures ultimately are only useful when they can be shown to be
reliable prediction variables of software development cost and schedule, software
maintenance cost and schedule [7], or software performance.

If the product measure is to be used as a performance predictor, performance
measures need to be established that baseline acceptable performance and act as
outside variables against which to test the product measure. If performance
measures cannot be established, it may be that this cell, i.e., this dimension at this
level, is not important to the performance prediction system. If the product measure
is to be used as a cost and schedule predictor, cost and schedule measures against
which to test the product measure need to be collected (or calculated). If cost and
schedule measures cannot be established, it may be that this cell is not important to
the cost and schedule prediction system.

Product measures that are found to be too costly to collect need to be discarded.
Likewise, product measures that are found to be ineffectual in the prediction
systems also need to be eliminated. However, if performance or schedule and cost
measures have been developed, other predictive measures must already exist or
must be developed to fill the appropriate cell in the taxonomy. When product
measures are eliminated, and the removal of the measure causes the cell to become
empty, then other product measures may need to be developed to fill the void.

The taxonomy itself needs to be tested empirically. If meaningful measures cannot
be defined for a specific cell (a given dimension at a given level), e.g., method
encapsulation, then perhaps the cell should be blackened out. Likewise, if useful
outside variables (performance, schedule, or cost) cannot be defined against which
to test the measures of a cell then, again, perhaps the cell should be blackened out.
If all levels of a dimension have been blackened out, the entire row (dimension)
should be reviewed for possible removal from the taxonomy matrix. On the other
hand, if a new dimension becomes apparent, a new row should be added to the
taxonomy matrix. The new dimension then needs to be populated with validated
measures.

7D[RQRP\��

Though extremely complex, software should be as measurable as any other complex
entity, say, automobiles. If current wisdom holds, encapsulation may prove to be as
important to the stability of object-oriented software as wheelbase is to the stability
of an automobile.

7D[RQRP\��

Table 1 Object-Oriented Measures Taxonomy
 Level⇒
Dimension⇓

Variable Method Class Program System

Clarity
CLM CLM CLM

Cohesion
(1/
(vfi+vfo+vp))

(local (mfi+mfo) /
total (mfi+mfo))

DMC
DCWO

DMC
DCWO

DMC
DCWO

Coupling
(1-(1/
(vfi+vfo+vp)))

(remote(mfi+mfo) /
 total (mfi+mfo))

UCGU
DCBO

UCGU
DCBO

UCGU
DCBO

Complexity,
inter-structural

remote vfi
remote vfo

remote mfi
remote mfo
remote I/Ov

NIM
PIM
RFC

AIM
PIM
RFC

AIM
PIM
RFC

Complexity,
intra-structural

local vfi
local vfo

SML
local mfi
local mfo
local I/Ov

Complexity,
psychological

MAA
I/Ov

MPC
WMC

MPC
WMC

MPC
WMC

Design
PRC
NOM

PRC
FOC

PRC
FOC

Encapsulation
FFU FFU FFU

Inheritance
vfd mfd PMI

PMIS
DAC
NAC

DAC
NAC

Information

hiding

PrIM PrIM PrIM

Polymorphism
vp mp (vp+mp) normal-

ized

Reuse
vfi-1 mfi-1 RUS

CRE
ΣRUS

ΣCRE
ΣRUS

ΣCRE

Size
LOC
AMS

LOC
AMS
NIV

LOC
AMS
AIV

LOC
AMS
AIV

Specialization
POM
NCM
NMA

POM
NCM
NMA

POM
NCM
NMA

Measures from [12]

Measures from [4], [5], [10], and [11]
Metrics from [18]
Measures that can be scaled up to a higher level or derived from scales at a lower level

Note: The abbreviated names of the measures and metrics are explained in the Appendix.

7D[RQRP\��

APPENDIX: Definitions of measures and metrics

AIM Average number of instance methods per class [11]
AIV Average number of instance variables [11]
AMS Average method size [11]
CRE Number of times a class is reused [11]
CLM Average number of comment lines per method [11]
DAC Density of abstract classes [12]
DCBO Degree of coupling between classes [12]
DCWO Degree of coupling within classes [12]
DMC Density of methodological cohesiveness [12]
FFU Use of friend functions [11]
FOC Percentage of function-oriented code [11]
I/Ov Input/output variables [18]
LOC Lines of code [11]: Number of statements (NOS) [11]: Number of semicolons in a class

(SIZE1) [10]
MAA Messages and arguments [12]
mfd Method fan down [18]
mfi Method fan in [18]
mfo Method fan out [18]
mp Method polymorphism [18]
MPC Message-passing coupling [10]
NAC Number of abstract classes [11]
NCM Number of class methods in a class [11]
NIM Number of instance methods in a class [11]
NIV Number of instance variables in a class [11]
NMA Number of methods added by a subclass [11]
NOM Number of local methods [10]
PIM Number of public instance methods in a class [11]
PMI Potential methods inherited [12]
PMIS Proportion of methods inherited by a subclass [12]
POM Proportion of overriding methods in a subclass [12]
PRC Number of problem reports per class or contract [11]
PrIM Number of private instance methods [12]
RFC Response for a class [5]
RUS Reuse of a class [4]
SML Strings of message-links [12]
ΣCRE Summation of CRE for all classes
ΣRUS Summation of RUS for all classes
UCGU Unnecessary coupling through global usage [12]
vfd Variable fan down [18]
vfi Variable fan in [18]
vfo Variable fan out [18]
vp Variable polymorphism [18]
WMC Weighted methods per class [5]

7D[RQRP\���

References

1. Abreu, Fernando Brito e, and Rogerio Carapuca, Candidate for Object-Oriented Software within a
Taxonomy Framework, Journal of Systems Software, 1995, 26, 87-96.

2. Archer, Clark, and Michael Stinson, Object-Oriented Software Measures, Technical Report
CMU/SEI-95-TR-002, Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA,
1995.

3. Baker, Albert L., James M. Bieman, Norman Fenton, Davis A. Gustafson, Austin Melton, and
Robin Whitty, “A Philosophy of Software Measurement”, The Journal of Systems and Software,
Vol. 12, 1990, p. 277-281.

4. Chen, J-Y, and J-F Lu, A New Metric for Object-Oriented Design, Information and Software
Technology, 1993, 232-240.

5. Chidamber, Shyam R., and Chris F. Kemerer, A Metric Suite for Object Oriented Design, IEEE
Transactions on Software Engineering, 20:6, June 1994.

6. Deutsch, Michael S., and Ronald R. Willis, Software Quality Engineering: A Total Technical and
Management Approach, Prentice-Hall, Englewood Cliffs, NJ, 1988.

7. Fenton, Norman, Software Metrics: A Rigorous Approach, Chapman & Hall, London, UK, 1991.

8. Fenton, Norman, Software Measurement: A Necessary Scientific Basis, IEEE Transactions on
Software Engineering, 20:3, March 1994.

9. Henderson-Sellers, B., A Book of Object-Oriented Knowledge, Prentice Hall, NY, 1992.

10. Li, Wei, and Sallie Henry, Maintenance Metrics for the Object-Oriented Paradigm, Proceedings of
the First International Software Metrics Symposium, May 1993b.

11. Lorenz, Mark, and Jeff Kidd, Object-Oriented Software Metrics, Prentice Hall, Englewood Cliffs,
NJ, 1994.

12. Neal, Ralph D., The Validation by Measurement Theory of Proposed Object-Oriented Software
Metrics, Dissertation, School of Business, Virginia Commonwealth University, Richmond, VA,
1996.

13. Neal, R.D., R.J. Coppins, and H.R. Weistroffer, The Assignment of Scale to Object-Oriented
Software Measures, Working Paper, Virginia Commonwealth University, Richmond, VA, 1997.

14. Neal, R.D., H.R. Weistroffer, and R.J. Coppins, An Improved Suite of Object-Oriented Software
Measures, Working Paper, Virginia Commonwealth University, Richmond, VA, 1997.

7D[RQRP\���

15. Rumbaugh, James, Michael Blaha, William Premerlani, Frederick Eddy, and William Lorensen,
Object-Oriented Modeling and Design, Prentice Hall, Englewood Cliffs, NJ, 1991.

16. Smith, David N., Concepts of Object-Oriented Programming, McGraw-Hill, NY, 1991.

17. Sully, Phil, Modeling the World with Objects, Prentice Hall, NY, 1993.

18. Tegarden, David P., Steven D. Sheetz, and David E. Monarchi, A Software Complexity Model of
Object-Oriented Systems, Decision Support Systems 13, 1995, 241-62.

19. Zuse, Horst, Software Complexity: Measures and Methods, Walter de Gruyter, Berlin, 1990.

20. Zuse, Horst, “Foundations of Object-Oriented Software Measures”, Proceedings of the Third
International Software Metrics Symposium, March 1996.

